This quiz problem is from HW#2 assignments (Prob. 2.28)

(A). (5 points) Determine I_2 in the circuit below when the 12V voltage source generates 48W of power.

\[I_1 = \frac{48W}{12V} = 4 \, \text{[A]} \]
\[I_2 = 0.25I_1 = 0.25 \times 4 = 1 \, \text{[A]} \]
\[I_2 = I_1 - I_3 = 4 - 1 = 3 \, \text{[A]} \]

To find R, consider the first loop.

\[-12 + R I_2 + R I_1 = -12 + R \times 3 + R \times 4 = 0 \]
\[\Rightarrow R = \frac{12}{7} \, \text{[Ω]} \]

(B). (5 points) Determine the “total power consumed” in this circuit- Please show how you got this value.

Power Consumed = \[R I_2^2 + R I_1^2 + R I_3^2 + R \frac{V_{dep}}{R} \]
\[+ 0.25 I_1 \, \text{(voltage across dependent source)} \]

\[V_{dep} = 3 \]
\[R I_2 = R I_3 + V_{dep} + R I_3 \]
\[3R = R + V_{dep} + R \]
\[V_{dep} = R I_1 = \frac{12}{7} \, \text{[V]} \]

\[\text{Power Consumed} = \frac{12}{7} \left(3^2 \right) + \frac{12}{7} \left(4 \right)^2 + 2 \times \frac{12}{7} \left(1 \right) + \frac{12}{7} \left(1 \right) \]
\[= \frac{12}{7} (9 + 16 + 2 + 1) = \frac{12}{7} \times 28 = \frac{12 \times 28}{7} = 48 \, \text{W} \]