Solution
EE101 Midterm Examination, February 7, 2019

Name	Student ID
1 page of formulas and tables o	only is allowed. But, you must show all your work even wher redits. Otherwise, you will lose points.
Problem 1 [20]	
Problem 2 [20]	
Problem 3 [25]	
Problem 4 [15]	
Problem 5 [20]	
TOTAL [100]	

[1] (20 points) Consider the following circuit with one independent 26 [A]- current source, one dependent current source and two resistors.

Step 1 (10 points) Express v_0 in terms of i_0 and solve for i_0 for the given current source amount.

$$\int_{0}^{2} = |2 \times i_{12} = |2(26 - 2i_{0}) = 2i_{0}
 |2 \times 26 = (24 + 2)i_{0} = 26i_{0}, i_{0} = \frac{12 \times 26}{26}
 |2 \times 26 = |2 \times 26|$$

Step 2 (10 points) Calculate the power delivered to or generated by the current-controlled current source. Is it generating or consuming power?

Voltage across the dependent source =
$$V_0 = 2 \times |2 = 24V$$

Power = $|2[A] \times 24[V] = +288[W]$
consumed

[2] (20 points) Find the current $I_{\mathcal{S}}$ from the 40V voltage source as shown in the figure.

Hint: One Delta-Wye transformation of (15 Ω , 15 Ω , 15 Ω) resistors would simplify the problem.

1-Y-transformation

[3] (25 points) Find the mesh currents i_1 , i_2 and i_3 .

(a) (15 points) Write down a matrix equation to find mesh currents as Ax=b, where A is a 3x3 matrix, x is a 3x1 matrix, and b is a source vertex.

By Inspection, y = 1 - 5 y

(b) (10 points) Then find the mesh currents.

(continued)

[4]. (15 points) The OP amp circuit below calculates a weighted sum of input voltages V_1 , V_2 , and V_3 . Express the output voltage V_0 as a function of three input voltages. In this calculation OP amp is assumed to be ideal (input resistance is ∞ , output resistance is zero and voltage amplification is ∞).

[5]. (20 points) A bipolar junction transistor circuit (Figure (a) and its equivalent circuit (Figure (b)) is shown below. For V_{in} = 2.7 [V], find the corresponding output voltage V_{out} .

$$\frac{T_{0}}{T_{0}} = \frac{2 \cdot 7 - 0 \cdot 7}{20 \text{ K}} = \frac{1}{10 \text{ K}} [A] = 0.1 \text{ mA}$$

$$\frac{T_{0}}{T_{0}} = \frac{2 \cdot 7 - 0 \cdot 7}{20 \text{ K}} = \frac{200(0.1 \text{ mA})}{20 \text{ mA}} = \frac{20 \text{ mA}}{20 \text{ mA}}$$

$$\frac{T_{0}}{T_{0}} = \frac{2 \cdot 7 - 0 \cdot 7}{20 \text{ mA}} = \frac{20 \text{ mA}}{1 \text{ mA}} = \frac{20 \text{ mA}}{20 \text{ mA}}$$

$$\frac{T_{0}}{T_{0}} = \frac{2 \cdot 7 - 0 \cdot 7}{20 \text{ mA}} = \frac{10 \text{ K}}{1 \text{ mA}} = \frac{20 \text{ mA}}{1 \text{ mA}}$$

$$\frac{T_{0}}{T_{0}} = \frac{2 \cdot 7 - 0 \cdot 7}{20 \text{ mA}} = \frac{10 \text{ K}}{1 \text{ mA}} = \frac{20 \text{ mA}}{1 \text{ mA}}$$

$$\frac{T_{0}}{T_{0}} = \frac{2 \cdot 7 - 0 \cdot 7}{20 \text{ mA}} = \frac{10 \text{ K}}{1 \text{ mA}} = \frac{20 \text{ mA}}{1 \text{ mA}}$$

$$\frac{T_{0}}{T_{0}} = \frac{2 \cdot 7 - 0 \cdot 7}{20 \text{ mA}} = \frac{20 \text{ mA}}{1 \text{ mA}} = \frac{20 \text{ mA}}{1 \text{ mA}}$$

$$\frac{T_{0}}{T_{0}} = \frac{2 \cdot 7 - 0 \cdot 7}{20 \text{ mA}} = \frac{20 \text{ mA}}{1 \text{ mA}} = \frac{10 \text{ mA}}{1 \text{ mA}}$$

$$\frac{T_{0}}{T_{0}} = \frac{2 \cdot 7 - 0 \cdot 7}{10 \text{ mA}} = \frac{20 \text{ mA}}{1 \text{ mA}}$$

$$\frac{T_{0}}{T_{0}} = \frac{2 \cdot 7 - 0 \cdot 7}{10 \text{ mA}} = \frac{20 \text{ mA}}{1 \text{ mA}}$$

$$\frac{T_{0}}{T_{0}} = \frac{20 \text{ mA}}{1 \text{ mA}} = \frac{20 \text{ mA}}{1 \text{ mA}}$$

$$\frac{T_{0}}{T_{0}} = \frac{20 \text{ mA}}{1 \text{ mA}}$$

$$\frac{T_{0}}{T_{0}} = \frac{20 \text{ mA}}{1 \text{ mA}}$$

$$\frac{T_{0}}{T_{0}} = \frac{20 \text{ mA}}{1 \text{ mA}}$$