```
EE 10 Lecture 9, Feb 5 2019

Midterm Exam on Feb ?

I page at formulas, tublus & Calculator allowed.

coverage (up to Jan 31)

Ohm's Law

Kch for calculation of voltages (node, branch)

RVh and currents (mesh, branch), power(+,-)

Equivalent circuit (Thevenins, Norton)

Diodes, Diode circuits (including LEDA)

Of Amp circuit.

5 problems for 95 min examination
```


Basic Rules of Op-Amp Circuits

- (1) KCL and KVL always apply everywhere in the circuit, but KCL is inapplicable at the output node when applying the ideal op-amp model. All other circuit-analysis tools can be applied to op-amp circuits.
- (2) The op amp will operate in the linear range so long as $|\upsilon_{\rm o}|<|V_{\rm cc}|$.
- (3) The ideal op-amp model assumes that the source resistance R_s (connected to terminals υ_p or υ_n) is much smaller than the op-amp input resistance R_i (which usually is no less than 10 M Ω), and the load resistance R_L is much larger than the op-amp output resistance R_o (which is on the order of tens of ohms).
- (4) The ideal op-amp constraints are $i_p = i_n = 0$ and $v_p = v_p$.

4.11 Determine the output voltage for the circuit in Fig. P4.11 and specify the linear range for v_s , given that $V_{\rm cc}=$ 15 V and $V_0=0$.

4.12 Repeat Problem 4.11 for $V_0 = 0.1 \text{ V}$.

4.17 Determine υ_o across the 10 k Ω resistor in the circuit of Fig. P4.17.

4.22 The circuit in Fig. P4.22 uses a potentiometer whose total resistance is $R=10~\mathrm{k}\Omega$ with the upper section being βR and the bottom section $(1-\beta)R$. The stylus can change β from 0 to 0.9. Obtain an expression for $G=v_0/v_s$ in terms of β and evaluate the range of G (as β is varied over its own allowable range).

