EE101 W19 Lecture 19, May 12, 2019

* Final Exam on March 20 8-11 am in BE 152.

2 pages of formulas a tables-no solved probs!

Calculator allowed

o there will be a problem solving session organized by TAS

(problems of the past 101 final, etc.)

March 13 (w) 7:10-10:10 pm

Oakes Acad 105

discussed in Chapter 8), $N_1/N_2=5$, $C=2\,\mathrm{mF}$, $R_s=50\,\Omega$, $R_{L}=1\,\mathrm{k}\Omega$, $V_z=24\,\mathrm{V}$, and $R_z=20\,\Omega$. Determine v_{out} , the ripple voltage, and the ripple fraction relative to v_{out} . Solution: At the secondary side of the transformer, $v_{s_1}(t) = \left(\frac{N_2}{N_1}\right) (V_s \cos 377t)$ $\frac{1}{5} \times 110\sqrt{2}\cos 377t = 31.11\cos 377t \text{ V}.$ = 31.11 V, which is greater than the zener voltage $\upsilon_{out} = V_z = 24 \text{ V}.$ In Example 7-19, we established that $T_{rect} = 8.33$ ms. Also, R5=5052 In Example 7-19, we established that $T_{rect} = 8.43$ ms. Also, $R_z \parallel R_L = \frac{20 \times 1000}{202 + 1000} = 19.6 \Omega.$ Application of Eq. (7.147) gives $V_r = \frac{[(V_z - 1.4) - V_t]T_{rect}}{8.C} \times \frac{(R_z \parallel R_L)}{[R_z + (R_z \parallel R_L)]} = \frac{[(31.1 - 1.4) - 24]}{50 \times 2 \times 10^{-3}} (8.33 \times 10^{-3}) \times \frac{19.6}{50 + 19.6}$ Hence, $\text{ripple fraction} = \frac{(V_r/2)}{V_z} = \frac{0.13/2}{24} = 0.0027,$ which represents a relative variation of less than ± 0.3 percent.

7.33 Find $i_a(t)$ in the circuit of Fig. P7.33, given that $v_{\rm s}(t) = 40 \sin(200t - 20^{\circ}) \text{ V}.$

7.31 Find $i_s(t)$ in the circuit of Fig. P7.31, given that $v_s(t) = 15\cos(5 \times 10^4 t - 30^\circ) \text{ V}, R = 1 \text{ k}\Omega, L = 120 \text{ mH},$ and C = 5 nF.

*7.32 Find voltage $v_{ab}(t)$ in the circuit of Fig. P7.32, given that $i_s(t) = 35 \sin(300t - 15^\circ) \text{ mA}$, $R = 80 \Omega$, L = 15 mH, and $C=200~\mu\text{F}$.

*7.32 Find voltage $v_{ab}(t)$ in the circuit of Fig. P7.32, given that $i_s(t) = 35 \sin(300t - 15^\circ) \text{ mA}$, $R = 80 \Omega$, L = 15 mH, 35 cos (3004-15-90) and $C=200~\mu\text{F}$.

$$Z_{ab} = -j \frac{50}{3} + j4.5 = -j \frac{50 - 3(4.5)}{3} = -j \frac{36.5}{3}$$

$$Z = R \parallel Z_{ab} = \frac{80(-j \frac{36.5}{2})}{80 - j \frac{36.5}{2}} = \frac{-j \cdot 80 \times 36.5}{240 - j \cdot 36.5}$$

$$V_{ab} = I_{5} Z = 35 - j \cdot \frac{105}{2} - j \cdot 80 \times 36.5$$

$$= 35 \times \frac{80 \times 36.5 \times 29^{10}}{\sqrt{240^{2} + (36.5)^{2}}} = \frac{-j \cdot 80 \times 36.5}{240 - j \cdot 36.5}$$

$$= 35 \times \frac{80 \times 36.5 \times 29^{10}}{\sqrt{240^{2} + (36.5)^{2}}} = \frac{-j \cdot 80 \times 36.5}{240 - j \cdot 36.5}$$

$$= 420.91 = 420.91 = 420.91 = 420.91 = 420.91 = 420.91 = 430.91$$