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Figure 7-2: Plgs of v(t) = Vi cofl 21/ T) + ] for three different values of ¢
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time derivative, and vice versa, We surmise from Eq. (7.36) that Table 7-3: Time-domain sinusoidal functions «(t) and
their cosi i
(1) = Re [Xedo"],
di o
= jool,
Z x(1) X
Acosar - A
or:
Acos(at + ¢) - Aelt
» Differentiation of a time function (r) in the time —A cos(wt + ¢) - Apipkm
domain ‘u cquu?h-!u 10 mulupiwuugn of its phasor Al - Aeina g
counterpart I by je in the phasor domain, «
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d
—(x (@) - juX
f, dr = [smnu'*mr di "
d
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=N U Iefor Jr} =~x{7 w']. 7.38) di
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1
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or Jw
(7.39)
ix = Mellge’™ ). (7.41b)

Table 7-3: Time-domain sinusoidal functions x(/) and

‘Table 7-4: Summary of u~i properties for R, L. and C.
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Step 1
Adopt Cosine Reference
(Time Domain)

¥

Step 2
Transfer 1o Phaser Damain

]DM%Y Aotadn
dyeutt mnnl/g‘b

63

() = 12 sin(eat 4:»1}: \,:.M,A,(kf-l:‘-—‘*gi—qa.)
4 =aepe(wt-)37%)

i 2y = jwl =
€ — 7o = ¢ V= 1267135 0v)

¥

Step 3
Cast Equations in

Mesh andlysis

KV

T

1 ’,
R+ —a|=Vs
Phasor Form o

¥

Solve for Unknown Variable
(Phasor Domain}

‘ I=V,/Z
=g

¥ ) ¥ s

i

Transform Solution 6 cos(or ~105°)

Step § i) = Refled]
Back to Time Domain (mA)

Figure 7-7: Five-step procedire for analying ac eircuils uning
the phasor-domain technique.
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vs(f) v
(a) Time domain

(b) Phasor domain

Figure 7-8: RL circuit of Example 7-5.

uy(f) LS Ry gl

(a) Time domain

2y =7y || Zg,

Va
L=+

(¢) Combining impedances

Figure 7-12: Circuit for Example 7-6.

V2 2,2+ jor

e
wC

(¢) Combining impedances

Figure 7-13: Circuit for Example 7-7

Determine (a) the input admittance Y. given that Ry = 10 Q.
R2=30 2 L =2 jH. and € = 10 nF. and (b) the current
ia(1) flowing through Ry

Solution: (a) We start by converting vs(f) to cosine format:

vs(t) = 4sin(107¢ + 15°)
=4cos(107¢ + 15° — 90°) = 4cos(1071 — 75°) V.

The corresponding phasor voltage is
Vi=4e 7"V,
and the impedances shown in Fig. 7-13(b) are given by
Zp, =R1=10Q,

- — .
Ze=gc =<0~ /0%

4 ol =30 4 j107 2 x 1070

Tn A3e) Zp represents the parallel con
Z Ly =2c | 2
d\ _ (=10)30 + j20)
h 10+

W30 20 j30) (3= 1)

_ - —G-jine
Z(: 20\ SHi GEm gon o ab
—_—

The input impedance is

ZQ +ZA Zi=Zpy 42 = 1043 jll= (13- 1R,

and s reciprocal by

L
Y=g = X T
EESIRMEFSTT
134411
[EaE]
= (454 J38) % 1077 = 580 % 107N g
b) The current I is
T= VoY= (de” 2y L0235 TUE 5,
By curreon division in Fig 7-13(0.
I
o I s
03 /0= 710
Jase M o N
= =74 10732
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(@) Y circuit (b) A circuit

Figure 7-14: Y-A equivalent circuits.

A =Y transformation:
Z = i (7.79a)
Za+Zpy+ Z
Z,Z,
Zo— (7.79b)
AT A
A —Y transformation:
1)
7,7,
Ta——2" (7.79¢)
Za + Zb + Zc
7,7
In=——"—, (7.79b)
Zo+7Zn+7Z;

Y- A transfomuation:
zusz‘z”z:wz‘zw‘ I
A EM}{?LZ% 80b)
rm 2.13+z;f1 + T2, i
7,7, .
To—— 20 (7.79)
Z,+7Zy+ 7
W72,
Z = %
Lu+Zh+Lc
—j6x 12 —j72
- 'l = _0s-jlLe e,
24— jl12—j6+12 36— j18
Z.Z. 24— j12 12
% = alic _( J ')>< _ga.
Z,+Zp+Z; 36— j18
and
ZvZ, —j6(24 — j12
Z3: b&a . J( .J ):*i4Q
Zo+7Zp+ 7, 36— j18

In Fig. 7-15(c), Zs represents the series combination of Z3
and Zg,

@  Ve=163 (V) -

O
T L= 2342,
= (8+/6)Q

()  Va=16430 (V) 3




}—o0
Actual =
circuit YUL
—o
(<) Von = Ve
Actual circuit with
independent sources -— Ly
deactivated
—o
(d) Zmh=Zeq

Figure 7-17: Thévenin-equivalent method for a circuit with no
dependent sources.

—o
Actual & Actual llﬁﬂ
circuit ‘i“ circuit
——o
(a) Ly =

Circuit with only
independent Vex
sources deactivated

(b) Zrh = Vex [lex

Figure 7-18: The (a) open-circuit/short-circuit method
and (b) the external-source method are both suitable for
determining Zty,, whether or not the cireuit contains dependent
sources.

Open-circuit / short-circuit method

Vs

= (7.83)
o

Zm =

where I is the short-circuit current at the circuit’s output
terminals (Fig. 7-18(a)).
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Figure 7-19: Using source transformation s smaplity the circut of Example 7.9, (AN impedances ae (s o)
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Exercise 7-15: Wrile down the node-vollage matrix
equation for the circuit in Fig. K7.15,
Yel—

A4L60 (A) F L{q,
Vi =1 V3 = %6—4\4)
2/\¢ 2+/2)8 [l] AS _\{4_.\/] ,,.‘.):;.)
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1 5 —4]|(i 10
-1-3 6 |=10]. (B.4)
I =10 i3 5

Note thataj; = 1, az; = —1, and a33 = 0. The regularized set

of three linear, simultaneous equations given by Eq. (B.4) is a
system of order 3.

Step 2: General Solution

According to Cramer’s rule, the solutions for i) to i3 are given
by

A
. (B.5a)
A
Ay
. (B.5b)
2T A
A
i = T‘ (B.5¢)

1=A"'B B:22)

where A~! is the inverse of matrix A. The inverse of a square
matrix is given by
adj A
A= B.23)
A

where adj A is the adjoint of A and A is the determinant
of A. The adjoint of A is obtained from A by replacing
each element aji with its cofactor Cj¢, and then fransposing
the resultant matrix, wherein the rows and columns are
interchanged, Thus.

adjA = [Cul. (B.24)

To illustrate the matrix selution method, let us return to the
three simultancous equations given by Eq. (B.3). Matrices A
and B are given by

(B.25a)

(B.25h)

According to Eq. (B.24), adj A is given by

cncn o]’ ;
adjA=|CnCnCyn| =|CuCnuCunf. (B.26)
C3 Cx C33 Ci3 C33 Cs3

Each cofactor is a 2 x 2 determinant. Application of the
definition given by Eq. (B.9) leads to

64 I8
adjfA=]64 =2|. (B.27)
46 2

Upon incorporating Eqs. (B.22) and (B.23) and using the value
of A obtained in Eq. (B.13), we have

i 1 64 18 10
I=|ia|==—]|64 -2 Q] (B.28)

: 20

i3 46 2 5

Standard matrix multiplication leads to

10
R i
h=g5[6418] 2 = 556X 10+4x0+18x5) =75,
(B.29)
Similarly, multiplication using the second and third rows of
adjA leads to iy = i3 = 2.5.

Creating the Adjugate Matrix to Find the Inverse Matrix

123
M=l074
560

det(M)= 1(0-24)-2(0-20)
+3(0-5)
=1
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I
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P‘A)M _20 _154,)(_+_
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-5 4 1

Adj(M)= -24 18 5] b Ol

Figure 7-28: Circuit for Example 7-12 in (a) the time domain
and (b) the phasor domain.

Nodal-analysis method

Our first step is to transform the given circuit to the phasor

domain. Accordingly,
Example 7-12: Nodal Analysis

Apply the nodal-analysis method to determine iy (1) in the ° Zc = 1 _ = ——i4Q
circuit of Fig. 7-25(a). The sources are given by: 5 o Cc= JjwC T 103 x 025 x 1073 J N
vy () = 12c0s 10%1 V., \/5 =1ze | ) - 4

- -¥0 Zy = jol = jl10° x 1077 =1 Q,
Uy (1) = 65in 10% V. Vio=[ 2
z
3
= -~ - =12

Solution: We first demonstrate how to solve this problem Us) = 12 cos 1077 VS| =12V,
using the standard nodal-anal method (Section 3-2), and d
then we solve it again by applying the by-inspection method an
(Section 3-4) . 3 P

s, =6sin 107t +=> Vi, =—j6V,

where for Vg, we used the property given in Table 7-2, namely
that the phasor counterpart of sin wt is — j. Using these values,
we generate the phasor-domain circuit given in Fig. 7-25(b) in

7.0 PHASOR DOMAIN ANALYSIS TECIINIGUES a

Vit @B A - Va=12

M. e LI 432 CHAPTER 7 AC ANALYSIS

a0 = Voltage Vou
ac input o—| Tmnxﬁ:xmu'l»—o—‘ Rectificr }—@—'I Filter }—@—'| e © do output

v
Lt v it =53
s 1 Fig. (7,100) mnd e @M 032 1 1w 17]
% e[ [vA] = 12|
i (i b R S T
ISR I, P P ton
ERE ] st s, ot sl ce by MATLAB e syt
e e ok
T cosfcint of Y, e s s llows i X = NS
Sl tyaragdy Ve anipmy. o
A 3o s JOBNY, e
o -
Vim @Iy, o
Figure 7-35: Block diagram of a basic de power supply.
L] 1025 J0NE P,
I tom i = PR o oas - e
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11-2  Transformers

1

2.1 Coupling Coefficient

rrange
magnetic flux

coupling coeffi
bet

/']‘m:l'urmer core

b Flasi
T
16 ol TaARALS i et Goll e S 3y 6 fI I e ¢
wound around a common core =1 i
(angular cors (Fig. 11-7(b)), or in any other ' !
onducive 10 having a significant fraction of the i
‘generat by cach ooil shared with e othér, The ;
ent & defines the i magnetic coupling 1
ween the coils, with 0 < k < 1. For a loosely emnpled pair A
itly coupled coils, k > 0.5 and for A

v
of coits, & < 0.5: for i
perfecly eoupled coils, & = 1. The magnitude of & depends
on the physical geometry of the two-coil configuration and the
magnetic permeability st of the core material.

= A trneformer s said to belimear if e of its core material

Magnetic flus=",

fa) Cylindrical core

Magnetic flux
i constant independent of the magnitude of the currents e
flowing through the coils (and hence, the sirength of the i
induced magnetic field), « 2 B
= B
=Z =
" =Z ma |
Mot cors mateials, including s, wood, and séramics,ars =7 =
o = e LS
dtheit o 1 equal to 10, the =4 B
permeability of free space. When nonferromagnetic materials Ere]

‘are used forthe common core around which the coils are wound,
¢l

requires the use of fe
hecomes h i

Wth certain types of par

w0 exhibit coupling coefficients approaching uniry

1

Frimary part
Secondary port

(b) Rectangular core

Figure 11-7: Magpetically coupled coils

which can be cast in matrix form as

[V\
3 " v,
Vi] _[ielr joM] [N i %
Va| T [JoM jolz] k] -

(transformer)

]

_[iatly+Ly)  jols e
| jeb, e+ Laf|R]T U

(T-eq

valent circuit)

The transformer and its T-equivalent circuit exhibit the same
1V refationships if the four terms in the matrix of Eq. (11.27)

(a) Transformer

(b) T-cquivalent circui

Fig

() M-equivalent circuit

11-10: The transformer can be modeled in terms of T- or Tl-equivalent circuits.

Transformer dots on same ends

Ly=Li—M, (11.29a)
Ly=Ly—M, (11.29b)
and

Ly=M: (11.29¢)

Had the transformer dots been located on opposite ends, the two
terms involving M in Eq. (11.27) would have been preceded by
minus signs. Consequently, the element values of inductors L.
Ly, and L, would be

Transformer dots on opposite ends

Ly=L+M, (11.30a)
Ly=La+M, (11.30b)
and

L,=-M. (11.30c)

Even though anegative value forinductance L, is not physically
i the ical equivalency holds heless and
the equivalent circuit is perfectly applicable.

LI &8
& A3
Ly Ly w=My o=
(a)
i M
4, A
”
Ly L me-MG
©)

7-12.1 Ideal Transformers

A ists of two ind called windings, that are
in close proximity to each other but not connected electrically.
The two windings are called the primary and the secondary,
as shown in Fig. 7-36. Even though the two windings are
isolated electrically—meaning that no current flows between
them—when an ac voltage is applied to the primary, it creates a

ic flux that p s both fings through a common
core, inducing an ac voltage in the secondary.

» The transformer gets its name from the fact that it
is used to transform currents, voltages, and impedances
between its primary and secondary circuits, <

The key parameter that determines the relationships between
the primary and the secondary is the turns ratio n = N2/Ny,

iy
-u
@
M M
P A
X + ; +
di
2] L =M o= M% L i
= = :
e "R
(O] )
A NN B A Nk
¥ . . W o . =
0 [C T L]
= = e . +
i

Dots on same ends

Figure 7-36: Schematic symbol for an ideal transformer. Note
the reversal of the voltage polarity and current direction when
the dot location at the secondary is moved from the top end of
the coil 1o the bottom end. For both configurations:

< fietlel T

w_M_ - h_M_1
v M

=

Dots on opposite ends

1
i vig




where Ny is the number of twrns in the primary coil and N is
the number of tums in the secondary. An additionally important
attribute is the direction of the primary winding, relative to
that of the secondary, around the common magnetic core. The
relative directions determine the voltage polarity and current
direction at the secondary, relative to those at the primary. To
distinguish between the two cases, a dot usually is placed at one.
or the other end of each winding, as shown in Fig. 7-36. For the 434 CHAPTER 7 AC ANALYSIS
ideal transformer, voltage vz at the secondary side is refated
1o voltage vy at the primary side by

~Vnll} _Ogult) with Vi = 0
n N

b SR (7.142)
w M

o o FV= o

where the polarities of vy and vy are defined such that their (+) * Pouf) with Vg = 0.7V
terminals are at the ends with the dots. In an ideal transformer,
10 power is lost in the core, 5o all of the power supplied by a
source 1o its primary coil is transferred (o the load connected
at its secondary side. Thus, py = py, and since p; = ijvy and
1 = iqua, it follows that wld) . Dot

M 2
S 43)
BTN (7.143)

are 7-37: Half-wave rectifier circuit

with iy ahways defined in the direction towards the dot on the
primary side and iy defined in the direction away from the dot
on the secondary side. The purpose of the dot designation is
1o indicate whether the windings in the primary and secondary
coils curl in the i !

or in_opposite directions. The coil directions defermine the

712 APPLICATION NOTE: POWER-SUPPLY CIRCUITS 435

|+

_tilt) Vo = o) ~ 20y

(c) Input-output rosponse

Figure 7-38: Full-wave bridge rectifer, Current flows i the sme discction through the Boad resistor for both alf cycles

436 CHAPTER 7 AC ANALYSIS

Tree = 2%66 A 52%

Example 7-19: Filter Design

8.33 ms,

ol
"7 120

If the bridge rectifier circuit of Fig. 7-39(u) hasa 60 Hzacinput  and the corresponding design spe
signal, determine the values of Ry, and C that would resull in
(a) Bridge reetifier with ilier Tup = Tt /12 a0 1ga = 12Tz, Where Treet i8 the period of
the reciified waveform. Assume Ryy = 5 Q.

Tivct

% 0.69ms, and Tgy = 12T = 100 ms.

W e Solution: If the frequency of the original ac signal is 60 Hz,  Application of Eq (7.145) leads to
D TR D g Vil fller Without filier the frequency of the rectified waveform is 120 Hz Hence, the
i, Copuchor Sechiaging. 7™y period of the rectified waveform is T ™ 2RHC
= X
! T Ripple voltage o, v

| T+ i Tmct

l— Tret —=1|

(b) Filtered output

Figure 7-39: Smoothing fiter reduces the varkations of waveform vy (£).




13 JLTIS LYSIS OF AC C TS 3
7-13 MULTISIM ANALYSIS OF AC CIRCUITS 437 i

1 by about an order of magnitude. An approximate

Fo Tm _08x100 expression for the peak-to-peak ripple voltage with the zencr

T R T e diode in place is given by
With the value of € known, application of Eq (7.146) gives v =L Vil (R IR —_e
¢ i ’ RC Ty T

R T B0 ey

0 691070 where V,, is the amplitude of the ac signal at the output of
LN Vot Risdliics the transformer (Fig. 7-40), the factor 14 V accounts for the
. e Reguisid voltage drop across a pair of diodes in the rectifier, V, is the

The circuit shown in Fig. 7-40 includes all of the power-supply  manufacturer-rated zener voltage for the specific model used in
subeircuits we have discussed thus far, plus two additional  the circuit, Tro is the periodof the rectified waveform, and R, is
elements, namely a serics resistance Ry and o di the manufacturer specified value of the zener-diode resistance,

0(f) = ¥y cos at

Example 7.20; Power-Supply Deslgn

Transformer Rectifier

A power supply with the configuration shown in
Fig. 7-40 has the following specifications: the input voltage
is 60 Hz with an ms amplitude Vi = 110V where
Vie = Va/2 (the rms value of a sinusoidal function is

RC filter and
veltage regulator

. 7-39(h) at the output of

Time Conpbgnt o -the smoothi) siker g
T<RC = pox 61515° = 34MX0 =) AT m5

FR=50.0

Figure 7-40: Complete powee-supply circuit.

discussed in Chapter 8), Ni/Nz =5, € =2mFE, R, =502,
Ri =1k, ¥, =24V, and R, =20 2. Determine vy, the
ripple voliage, and the ripple fraction refative (0 Vg
Solution: At the secondary side of the transformer,

M
U (1) = (F.) (Vacos3771)

= L% 110VZen 3771 = 3111 cos 370 V.

Hence, Vi, = 31.11 V. which is greater than the zener voltage
V, =24V

Consequently, the zener diode will limit the output voltage:
at

o =V, =24V:

In Example 7-19, we established that Tree, = 8.33 ms. Also, e
R p A= 2x100_ 560 fs=no
w1 A = 200 = 196

Application of Eq. (7.147) gives

AR IR TS I 3
K — e et .1 R CanF Tt
G111 — 14— 24) 9.6

(833 x 107%)

0% 2% 10 * 507196
= 0,13V (peak-to-peak).
Hence,
.13
s cn - 292y
which represents a relative variation of less than --0.3 percent Tk

10



