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Figure 7-1: The fanction v(f) = Vimcoswl ploticd as &
function of (a) o and (b) 1

which is displayed in Fig. 7-1(h) as a function of 1. We observe
that the eyclical patiem of the waveform repeats ivsell every T
seconds, That is,

v(t) = v(f +nT) (71.6)
—_—

for any integer value of n

Sinusoidal waveTorms can be expressed in terms of either
sine or cosine functions.

Table 7-1: Useful_trigonometric identities (additional

relations are 2;,;'.. |--m 4_’3

sin & = = cos(x F 90°) 7a)
081 = +sin(x % 90°) 370
sinx = —sin(x + 180°) (170
€053 = —costx & 180°) 37y
sin(—x) = —sin & )
cos(—x) =cosx .1
sinfx 4 y) =sinccosy cosxsinyg  (1.72)

cos(s £y) =cosxcosyFsinasiny (170

(- y) —eostr £ ) (LT
O+ ) +sinG—v) ()
= cos(x + y) +cosx —y) (1K)

~60°. A cosime-referenced sinusoidal
function generally takes the form

 is called ity phase angle. For i(r) of Eq. (7.8),
e e e

angle ¢ may assume any positive or negative value,
sually add or subtract multiples of 27 radians (or
lently, multiples of 360°)50 that the remainder is between
T and sign (+ or —) of ¢

ach and in what direction
cd along the time axis, relative

e rresponding Lo wit) with ¢ = 0.

Figure 7-2 displays three waveforms:

. o
Sinusoidal waveforms can be expressed in terms of either
sine or cosine functions.

» To avoid confusion, we adopt the cosine form as
our reference standard throughout this and followup
chapters. «

This means that we will always express voltages and currents in
terms of cosine functions, so if a voltage (or current) uLﬁ)rm
is given in terms of a sine function, we should first convert it
to a cosine form with a positive amplitude before proceeding
with our circuit analysis. Conversion from sine to cosine form
is realized through the application of Eq. (7.7a) of Table 7-1.

va(1): Reference wave (¢ =0)

0y(7): Leads reference wave

T At ) (1) Lags reference wave (occurs later in time)

/4

ol
o
ol

Figure 7-2: Plots of vit) = Vi, cos[(21/T) + ] for three differcnt values of ¢

Example 7-2: Phase Lead / Lag

Giver

e current waveforms
i(f) = =8 cos(at —30°) A
and
ig(e) = I2sin(wr +45") A,
does i) () lead i5(f), or the other way around, and by how much?

Solution: Standard cosine format requires that the sinu-
soidal functions be cosines and that the amplitudes have positive
values, Application of Eq. (7.7d) of Table 7-1 allows us to
remove the negative sign preceding the amplitude of iy(r),

in(e) =@ costwr - 30°) T8 cos(ar - 30° + 180°)
= Bcos(wt + 150°) A,

Application of Eg. (7.7a) t0 ia(r) leads to

ia(t) = 12sinfet -+ 45°) = 12 cos(er +45° — 90%)

= 12cos(wr — 45°) A,

Hence, ¢y = 150°, ¢p = —45°, and

Exercise 7-2: Given two current waveforms:

i1(t) = 3coswt
and

i2(t) = 3 sin(wt + 36°),
does i5(1) lead or lag #4(t), and by what phase angle?
Answer: ip(¢) lags iy(f) by 54°. (See €AD))
Aaf=) crn(wh +36-90) = 3 con(wtO54’)




A complex number z may be written in the rectangular form

z=x+jy, (7.12)

where x and y are the real (Re) and imaginary (Jm) parts of z,

respectively, and j = 4/—1. That is,
x = Re(z), v = Jm(z). (7.13)
Alternatively, z may be written in polar form as

z = |z]e’® = |z|/0 (7.14)
M= | Z| NPT, G=ta 4

where |z| is the magnitude of z, 8 is its phase angle, and the

form /@ is a useful shorthand representation commonly used

in numerical calculations. A phase angle may be expressed in

degrees, as in # = 30°, or in radians, as in 8 = (.52 rad.

ef9=cos(9+jsin9. (7.15)

we can convert z from polar form, as in Eq. (7.14), into
rectangular form, as in Eq. (7.12)),

']ZJﬁf'"s' z = |zle’? = |z|cos6 + jlz|sin ), (7.16)
2 z

|Z‘ enply

Table 7-2: Properties of complex numbers.

—u0 <
Euler's Identity: &/ = cos + jsin® Q/J’—.: “‘Ga}‘l"}iﬁﬁ v)
ot _ it 0 4o =l i 8
| sind = i cosf = ——— )

2=xt jr=lrle v mx- =il comfley ag.ﬂ‘;{t
REA| f"i‘{ *=Re(z) = |7 cos§ Jol = vzt = T+ 32

tan! (y/x) ifx >0,
1 (p/x:
tan—!(y/x)£7 ifx <0,
> = Jm(z) = |z|sin® o= £
—tWﬂ'\MY A=t s sl w2 ifx =04nd >0,
f —n/2 ifx =0andy <0.
2 = it £ = g2t
z1=x1+jn n=x+in
+ zn=niffy =xady =y z+z =@ +x2)+i0n+w)
X 2122 = [zy[2a]e/ 1t n_ Bl e
. n  jnl

=elT=e /= 1/4180°
J =R = 1900 it = o

/j:iz‘;'”:iiﬂ}ﬂ T = 0

the desired variable—such 4s & partieular voltage of current—
in the phasor domain, conversion back to the time domain Time Domain Phasor Domain
provides the same solution that we would have obtained had
we solved the integro al equations entirely in the time

v(r) = Voeoser - V=l

eres

domsin. The procedure involves multiple steps, but it avoids v(1) = Vpcos(@t +4) ++ V=Voelt.  (731b)
the complexity of solving differential equations containing, )
sinusoidal functions. fg=-n/2

v() = Vocos(eot —7/2) <= V= Voe /72 (132
7-3.1  Time-Domain/Phasor-Domain Since cos(er — 7/2) = e0s(7/2 — i) = sinw! and

Correspondence

eI = costn/2) — j sint /2

Transformation from the time domain 1o the phasor domain 2
entails transforming alltime-dependent quantities inthe circuit || Fd (7:32) rduces to s ,Cd_(,-qa) AT
which in effect wransforms the entire circuit from the time = :
i | v( = Vosinwr == V=W (733

domain 1o an equivalent circuit in the phasor domain. Thel @
quantities involved in the transformation include all currents

ages, all capacitors and industors. The
values of cap t change per se, but v(r) = Vosin(or +¢) = V= Vel @A (734
their v refationships undergo o transformation because they!
involve differentiar with respect to 1.

which can be gencralized to

Oceasionally, voltage and current time funetions may encounter
differentiation or integration. For cxample, consider a current
i(r) with a corresponding phasor I,

4 vollage O T current, can be expressed in the form

. i) = Mellel ], g3
AN ="Re[ X /™, (7.28)% )
v &P where 1 may be complex but, by definition, not a funetion of
xd}"' X eor(ert+ f X‘X ime, The derivative df /d1 is given by

where X is a time-independent function” called the phasor T a4
counterpart of x(1). Thus, x(1} is defined in the time domain, = J’I'R(Cle‘"'hl =Re [J;(lr"")} = Mel jwle'™),

while its counterpart X is defined in the phasor domain, w ooy 58 4 e
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time derivative. and vice versa, We surmise from Eq. (7.36) that

di

jol, @37
@t g

» Differentiation of a time function #(7) in the time
domain is equivalent to multiplication of its phasor
counterpart T by ja in the phasor domain. -«

Similarly,

fa dr= fmew'"‘l a
= U Teet u,}

Table 7-3: Time-domain sinusoidal functions «(t) and
their cosi
(1) =Re [Xes],

x(1) X
Acoswt - A
Acos(at + ) - Acib
—Acostwt +¢) - AeiEm)
Asinwr - AeiMZ—_jA
Asin(wr + ¢) - Api#-T)
=Asin(or + @) - ApilttTid)
%r x() = juX
2 [Acos(wt +4)] = joAed
di
f x(0) di =
Jw
-
/‘Agus{w{ ) dr - 5 Aei®
i = Mellge’™]. (741

‘Table 7-4: Summary of u~i properties for R, L. and C.

Property [ I c
E di dv
i v=Ri u=Lg i=C—
1
V-1 V=R V=joll V=-—
e
: 1
z R Jwl R
de equivalent I3 —o—o— — o—

Short cireuit  Open circuit

High-frequency equivalent I3 —o—o0—
‘Open circuit  Short circuit
[Zz] 124 lc|
Frequency response R

oL /e C
. LA e,

Exercise 7-5: Determine the phasor counterparts of the

following waveforms:

(a) iy(n) =2gin(6 x 10 —30°) A, —> bMJ—({,\(\p‘f-—JOEﬁDJ
(b) ia(r) = @4 5in(10007 + 136%) A =-120°

Answer: (a)I; =2/-120° A,
L).—, :
(See @) 2 g3

Exercise 7-6: Obtain the time-domain waveforms (in (D
standard cosine format) corresponding to the following
phasors at angular frequency @ = 3 x 10% rad/s: m 8 M“‘F‘?D’)

(@) Vi=(=3+j4HV
.
) Va=@ —jhV

is it?

() Ly =4/=134> A.
a4 ;.f@m_.,rﬂ

"1“ ﬂ,&"‘ 7h<—,.?|?

- Voot~
Answer: (a) ui(r) =5 cos(3 x 10% + 126.87°) V. ‘1"2'1'(’
(b) va(t) =5 cos(3 % 10% — 53. - 53.13%) V.. (See €D V- (See ©D)

Exercise 7-7: Atw = 10 rad/s, the phasor voltage across = ,_? H
and current through a certain element are given by l’ﬂ’!——’
V =4/-20° Vand I = 2/70° A. What type of element

Answer: Capacitor with C = 0.5 pF. (See )

G (8 =45)

=cop & wv“lo 4+ & Sm ‘10

,O

= 4m) B,

L

Step 1
Adopt Cosine Reference
(Time Domain)

]Dﬁmfmf Aomadn

63

dyeutt A'Ml/gii

¥

Step 2
Transfer 1o Phaser Damain

b —
R— Zx =R

L — 2y = jol
€ — Ze = 1joC

Cast Equations in

Step 3
Phasar Form

|

() = 12 sin(at ~457) = u.a,a,(kf{—_%f—qef)

™

¥ =1z cpe(wt-)37°)

¥

Solve for Unknown Variable
(Phasor Domain}

Step
Transform Solution
Back to Time Domain

Iz

i) = Refled]
St 105°)

Figure 77
the phasor-domain technique.

i prosechine o analying o cicuils using




Using the specified values, namely R = v3ka, C=1uF. — Wz
and w = 107 rad/s, Eq. (7.67) becomes I
1210 108 jrae i R+ S Fee

T x B NP =106 1+ \ ,,Jc,\{;
he = Jucle

In preparation for the mext step. we should convert 1
expression for Linto polar form (Ae/” where A is a positive real
number) because it is easier to multiply or divide two complex
numbers sing the polar form. To that end, we should replace
in the numerator with e/"/> and convert the denominator into
polar form:

I+ V3 =v1+3e? =20/,

¢=tan"" (4) =60°.

12e=i135° _ g0

where

Hence,

- ol (C1ISHIP—0%) _ 6 108"
2e15°

Step 5: Transform solution back to time domain

To return to the time domain, we apply the fundamental relation

between a sinusoidal function and its phasor counterpart,
namely

(1) = Re[Ted™' ] = Re[be~19% ¢i* ] = 6 cos(ewr—105°) mA.

This concludes our demonstration of the five-step procedure of
the phasor-domain analysis technique. The procedure is equally
applicable for solving any linear ac circuit

X Ry joly a1
V) ey v Z) =Ry +jul,
L P ‘V:‘IZ,I=Y/Z
r
1 Ry, loC & ”C" 1
=l =-jwer =
Vi R Vi Zy=Ry— w('
(b) RC
| el G i
4 iy
v - Vv Zi= ,lm.; “,L‘)
Al = mc,
() L @ (,’C;‘ |.J = Q
e
Figure 7-9: Three different, two-element, series combinations m;
I Current Division
—

VSC

) Y Yz

I |12

= i I Y
1= V] +Y2 2= Y1 +Y2
= L —

Zw'i’lz% z,+z Is

Figure 7-11:

parallel.

Current division among two admittances in

RESES

+

(f) v
(a) Time domain

(b) Phasor domain

Figure 7-8: RL circuit of Example 7-5.

| Voltage Division
—
o]
l +

7, V= (L) v,

O

Figure 7-10: Voltage division among two impedances in series.

Exercise 7-9: Determine the input impedance at
@ = 107 rad/s for each of the circuits in Fig. E7.9.
A

y l
ZJC )WC_%)‘JL- G
L R 04
) . (}.x|99 J o(o 15
okl v
-:.)"5 o
\ Z, — € 2 uF

‘ =____L__
=Wl | Ly P02 - 2+
6 9 G 3"!‘“" a0
“jie

Answer: (a) Zi = j5 Q. (b) Zi= —j10 . (See €AD)




uy(f)

(1) Time domain
J
L =Ry~
Zy = jool,
Zp,= Ry

=7 || Zg,
L=+

(¢) Combining impedances

Figure 7-12: Circuit for Example 7-6.

(¢) Combining impedances

Figure 7-13: Circuit for Example 7-7

Determine (a) the input admittance Y;, given that By = 10 Q,
B2 =302, L=2pH and C = 10 oF. and (b) the current
ix(1) flowing through £;.

Solution: (a) We start by converting vs(?) to cosine format:
Us(t) = 4sin(107t + 15°)
=4cos(1077 + 15° = 90°) = 4cos(107t — 75°) V.
The corresponding phasor voltage is
Vi =4e 7"V,
and the impedances shown in Fig. 7-13(b) are given by

Zp, =R =102,

=i i

A S —
C= wC T 107 x 10-8

=—jl0Q,

Zy = Ry jool =30 4 j107 5 2 107 = (30 4 j20)

€}, Zo eepreseits the paallel combination of Zc.

R AT
(=J10)(30 + j20)
=i
W30 20-j30) 3
~A-00_O=-B8-ID 6 s
ST G4 6D
The inpat impedance is
Zi=Zu 2= 1043 j1l= (13- 1R

and s reciprocal by
13411
[EFSTT]

=454 38 x 1077 =580 % 102
{b) The current 1 is given by

1= V¥ = e/ (5,805 10242y 02356 /M8 4

By current division in Fig. 7-13(b),

L 0235
il

=T 1072

6TE

021250

=74 % 107 gou107 - 1432°) A,

@) Y circuit (b) A circuit

Figure 7-14: Y-A equivalent circuits,

2. i
oSSt s e ’
Y— A transformation:
7, - B2+ T + 01 —
Z
g Bl ot 1 22
z
7. DT BT Ty o

Zy




A —Y transformation:

Za+Zpy+ Z
Z,Z.
Iy=—"——. (7.79b)
A A )
A —Y transformation:
1)
7.7
To=——n® (7.79¢)
Zo+Zy+Z
7.7,
=~ (7.79b)
Zu an Zh S Zc

L, 7 "
73— et Co (7.79¢)
Z,+7Zy+ 7
ZvZe
.
L3+Zh+Lc
—j6x 12 —j72
= il = _s-jle e,
24— j12—j6+12 36— /18
Z.Ze 24— j12) x 12
ZZ: adic :( J ')X —8Q.
Za+Zp + Ze 36— 18
and
ZhZ, —j6(24— j12
iy bla .1(4_Jl):7j49.
Zo+Zp+Ze 36— /18

In Fig. 7-15(c), Zf represents the series combination of Z3
and Zg,

@  Ve=1630 (V) 3

(b)  Vs= 16430 (V) 1 (©

b—o0
Actual =
circuit Voe
—o
(] Vo = Voo
Actual circuit with
independent sources -— Ly
deactivated
—o
(d) Zyy = Zg

Figure 7-17: Thévenin-equivalent method for a circuit with no
dependent sources.




—0
Actual i Actual llsc
circuit ‘i“ circuit
——o
(a) Zyy = Voc /lsc

Circuit with only
independent
sources deactivated

‘—I Lok

(b) Zrh = Vex [lex

Figure 7-18: The (a) open-circuit/short-circuit method
and (b) the external-source method are both suitable for
determining Zty,. whether or not the cireuit contains dependent

sources.

Open-circuit / short-circuit method

Zm = . (7.83)

where I is the short-circuit current at the circuit’s output
terminals (Fig. 7-18(a)).

Rie3q Lp=dx10°H
- —

R-60

|n. 20

Ly =008 mH

(0= Vo= 15 =2 A

Zy-dejh .

=i >
K=2A t,‘, 151+/108 7., 2-j10

b
@2 =R IZ ’

IS 08 T3 p .

Vil Z3=2-/10 el

i b
@ V=W~ (7024 7216V

Z-6514/508
— Vi 7

@B=Z 472 ‘

o) 7.6 cos (10% - 31619V

(0 Thévenin cquivalent

Figure 7-19: Using.

Example 79, (AH imp )

Rn-ga2n CnoOWF

Exercise 7-15: Write down the node-voltage matrix
equation for the circuit in Fig. K7.15,

460 (A)

Ni — V2

| S—)
@+2)8 [I]"’“

Figure ET.15

2A

i~

Answer:

Q+J2) -@+i2][Vi] _ [2- 4/
-Q+J2) -2 (V2] | 4/ |°

(See GD)

1 mH

Figure 7-25: Circuit for Example 7-12 in (a) the time domain

and (b) the phasor domain.

Example 7-12: Nodal Analysis
Apply the nodal-analysis method to determine iy (1) in the
circuit of Fig. 7-25(a). The sources are given by:

vg, (1) = 12¢0810°1 V,

sin 10% V.

ug(f) =

Solution: We first demonstrate how to solve this problem
using the standard nodal-analysis method (Section 3-2), and
then we solve it again by applying the by-inspection method
(Section 3-4).




Nodal-analysis method
Our first step is to transform the given circuit to the phasor
domain. Accordingly,

1 =
joC 103 x0.25x 103
Zi = joL = j10° x 1073 = j1 Q,

Zc = —j4 2,

v, = 12cos 10% <> V=12V,

and

Uy, =6sin10% <> Vi, =—j6V,

where for Vg, we used the property given in Table 7-2, namely
that the phasor counterpart of sin wt is —j. Using these values,
we generate the phasor-domain circuit given in Fig. 7-25(b) in

10 PHASOR DOMAIN ANALYSIS THCHNIQUS @
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ncmpu:ﬁ)—' Transformer }—o—'| Rectificr }—hl Filier }—h| :‘:\'J“f‘w V;“dc output
/\\/K\j;\\/ /\ /\ /\ 1 /\IVT\N‘ s
AT |

Figure 7.3

ook diagram of a basic de power supply.

11-2  Transformers o

1

2.1 Coupling Coefficient 2

T couple magnetic flux between two c
wound around a common core (FIg.
urma of a rectangular core (Fig, 1

magnetic flu generated by each coil shared with the oiher. The

Magnetic flux—",

(@) Cylindrical core

» Atransformer s said (o belinear i 1 of its core matcrial
s a constan, independent of the magnitude of the currents
flowing through the coils fand hence. the sirength of the i

Magnetic flux

=

gl

induced magnetic field), « =Z L
=7 i
==~ =

Most core materials, including ait, wood, and ceramics, are =z wE
dthieir gt y equal to po, the =4 e
permeaibilisy of free space. When nonferromagnetic material = -

are used forthe common core around which the coils are wound,

i

Primary port

(b) Rectangular core

The degree of nonlincarity depends on the choice of materials, Figure 11-7: Magnetically coupled coils
Wathcertain types of purificd ivon, fransformers can be desiged
0 exhibit coupling coefficients approaching uniry

which can be cast in matrix form as

Vi _[Jedls + L) el L. 12wy
Vi] _[iwLy joM] [T Vo 7L jeb, ety +La][R]T T
[\'z] o [ij ijz:[ [lz]‘ L (T-equivalent circuit)

(transformer)

The transformer and its T-equivalent circuit exhibit the same
1-V relationships if the four terms in the matrix of Eq. (11.27)

(@) Transformer

(b) T-equivalent circuit () M-equivalent circuit

Figure 11-10: The transformer can be modeled in terms of T- or TT-equivalent circuits.

Transformer dots on same ends

Ly=Li—M, (11.29a)
Ly=Ly—M, (11.29b)
and

L,=M. (11.29¢)

Had the transformer dots been located on opposite ends, the two
terms involving M in Eq. (11.27) would have been preceded by
minus signs. Consequently, the element values of inductors L.
Ly, and L, would be

Transformer dots on opposite ends

Li=Li+M, (11.30a)
Ly=Ly+M, (11.30b)
and

L,=-M. (11.30c)

Eventhough anegative value forinductance L, is not physically
iz the ical equivalency holds heless and
the equivalent circuit is pes ly applicable.
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7-12.1  Ideal Tra

sformel

A ists of two indk called windings, that are
in close proximity to each other but not connected electrically.
The two windings are called the primary and the secondary,
as shown in Fig. 7-36. Even though the two windings are
isolated electrically—meaning that no current flows between
them—when an ac voltage is applied to the primary, it creates a
magnetic flux that permeates both windings through a common
core, inducing an ac voltage in the secondary.

» The transformer gets its name from the fact that it
is used to transform currents, voltages, and impedances
between ils primary and secondary circuits, <

The key parameter that determines the relationships between

the primary and the secondary is the turns ratio n = N2/Ny,

"
n=MZFE b L2
(L]
'3 A B
di
L =My o= (7]
(b)
M
A
iz
© (]
M
A~
X +
L a.,—M% Ly
O]
A, NNy 2, A, NN,
¥ . . % & 0 =
" [C T L]
= = e . +
=
i

Dots on same ends Dots on opposite ends

Figure 7-36: Schematic symbol for an ideal transformer. Note
the reversal of the voltage polarity and current direction when
the dot location at the secondary is moved from the top end of
the coil to the bottom end. For both configurations:

vi M B_M_1 o _uh_

v N

. 1
N oon P v

where N is the number of trns in the primary coil and Ny is
the number of twms in the secondary. An additionally important
auribute is the direction of the primary winding, relative to
that of the secondary, around the common magnetic core. The
relative directions determine the voltage polarity and current
direction at the secondary, relative 1o those at the primary. To
distinguish between the two cases, a dot usually is placed at one
or the other end of each winding. as shown in '
ideal transformer, voltage v; at the secondary s
1o voltage vy at the primary side by

(7.142)

where the polarities of v) and v are defined such that their (+)
terminals are al the ends with the dots. In an ideal transformer,
10 power is lost in the core, so all of the power supplied by a
source 1o its primary coil is transferred (o the load connected
at its secondary side. Thus, py = py, and since p; = ijvy and
2 = vy, it follows that

(7.143)

with i) always defined in the direction towards the dot on the
primary side and iy defined in the direction away from the dot
on the secondary side. The purpose of the dot designation is
to indicate whether the windings in the primary and secondary
curlin the i !

or in oppsite directions. The coil directions determine the

CHAPTER 7 AC ANALYSIS

Vi) - ou(t) with Vi =0
vy 0
=
Boutlf) with = 0.7V
R
vinlf) o)

Figure 7-37: Half-wave rectifier cireuit

I+
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{b) Negative hall cycle

Vo)~ It} = 2¥

i )

(c) Input-output rosponse

Figure 7:38: Curvent for

T Zx66 M

Example 7-19: Filter Dasign
1
That = 5~ = 8.33ms,
20

1f the bridge rectifier circuit of Fig. 7-3%(a) has a 60 Hz ac input
signal, determine the values of Ry, and € that would result in
Tup = Trect/12 and 1gs = 12051, where Tiar is the period of
the rectified waveform, Assume Riy = 5

g design specifieations are

~0.69ms, and Tgy = 12T = 100 ms.

Solution:  If the frequency of the original ac signal is 60 Hz,  Application of Eq. (7.145) leads to
the frequency of the rectified waveform is 120 Hz Hence, the

IO )
m5|

period of the rectified waveform is Ty R 2RpC
or the RC filter by about an arder of magnitude. An approximate
o T 0.69x10°Y . jon for the peak-to-peak ripple voltage with the zener
e s = 2xs MR diode in place is given by
With the value of € known, application of Eq, (7.146) gives (Ve = 14y =Vl Ry [l RD)
V= T (147
R T 100x 10 2 14550, R Re+ (Re | R1)
LR T RIS e

where V,, is the amplitude of the ac signal at the output of
the transformer (Fig. 7-40), the factor 1.4 V accounts for the
voltage drop across a pir of diodes m the rechificr, V, is the
t shown in Fig. 7-40 includes all of the power-supply manufacturer-rated zener voltage for the specific model used in
s we have discussed thus far, plus two additional  the cireuit, T is the period of the rectified waveform, and R, is
and u_zence. the manufacturer specified value of the zener-diode resistance.
e i

7-124  Voltage Regulator

Example 7-20: Power-Supply Design

A power supply with the circuit configuration shown in
Fig. 7-40 has the following specifications: the input voliage
is 60 Hz with an ms amplitude Vi = 110V where
putof Vi = Vi/v2 (the rms value of a sinusoidal function is

Time Conbant of--the smosthif ket g
T=RC = hox 610" = 40 =) A5 m5
FR=50.0

it the 7ener diode
peak-to-peak ripple voltage V; (Fig. 7-39(h)) at the out

10
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(a) Bridge rectifier with filier

Capacitor charging up With filker Without filier
| Capacitor disch rgmg/ A

T Ripple voltage o

| T+ i Tmct

— Treet —|

(b) Filtered output

Figure 7-39: Smoothing fiter reduces the variations of waveform v ().
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o1} = ¥, cos i

v ()

‘Transformer Rectifier

RC filter and
voltage regulator

Figure 7-40: Complete powee-supply circuit.

discussed in Chapter 8), Ny /Ny =5, C = 2mF, R, =509,
R = 1kQ, ¥, =24V, and R, =20 2. Determine vy, the
ripple voltage, and the ripple fraction relative (0 Vg
Solution: At the secondary side of the transformer,

(1) = (%)Mcns.ﬂ‘?v)

1
= 5 % 110v2e0s 3771 = 3111 cos 377 V.
Hence, Vi, = 31.11 V. which is greater than the zener voltage
V=24V
Consequently, the zener diode will limit the output voliage
at

Vo =V, =24V,
In Example 7-19, we established that Tree, = 8.33 ms. Also, .
R R0 e, Rs=mn.
AR 201000 T T

Application of Fq, (7.147) gives

[tV — 1) — Wyl ‘ 1 &y I ¥
V= X et .1 R ('ﬁ;qu e
6

_BLH L - ) gy

Sox2x 10" * 507196
= 0,13V (peak-to-peak).
Hence,
/s .13,
ripple fraction #ﬁb % 0.0027,
which represents a relative variation of less than 0.3 percent =y
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