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Figure 5-44: Circuit for Example 5-17.
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CHAPTER 12 CIRCUIT ANALYSIS BY LAPLACE TRANSFORM
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ies RLC circuit connected 1o a source Vs at
the capagitor may have had an initial charge
ith a corresponding initial voltage ve(07).

6-3 Series RLC Overdamped
Response (a > @y)

A key takeaway lesson from the qualitative deseription given
in the preceding section is that after closing the switch in a
series RLC circuit, th oss the capacitor will charge
up or discharge dows . cross the

: pation for
10 obtain
ignated as the

an expression for ug(t) fo with1 =0
time immediately after the switch is closed.
As noted in the preceding section, the

re of the anll\lmn

coefficient & compares with that of the
The values of the two parameters are d by the values of
R, L, and C. per the expressions in Eq. (6.1). In the present

c ase corresponding to ¢ > wy, which
is culled the overdamped response. The other two cases are
treated in follow-up sections.
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6-3.1 Differential Equation

For the circuit in Fig. 6-7, the KVL loop equation for 1 > 0
(after closing the switch) is

Ric+ L a;h 4 Uc = Vs (fort = 0), (6.2)
—Lj L@Rde

where ic and v are the current through and voltage across the
capacitor. The capacitor may or may not have had charge on
it. If it had, we denote the value of the initial voltage across it
ve(0), which is the same as vc(07), the voltage across it before
closing the switch (since the voltage across a capacitor cannot
change instantaneously).




6-3.2 Solution of Differential Equation

The general solution of the second-order differential equation
given by Eq. (6.5) consists of two components:

ve(t) = ve(t) + vs(1), (6.7)

where vy () is the transient (also called homogeneous solution
of Eq. (6.5) or the natural response of the RLC circuit)
and vg(t) is the steady-state solution (also called particular
solution). The transient solution is the solution of Eq. (6.5)
under source-free conditions; i.e., with Vg = 0, which means
that ¢ = Vi/LC also is zero. Thus v (1) is the solution of

up +avp+bu, =0  (source-free). (6.8)

The steady-state solution vg(#) is related to the forcing function
on the right-hand side of Eq. (6.5), and its functional form is
similar to that of the forcing function. Since in the present case,
the forcing function ¢ is simply a constant, so is v (#). That is,
Ugs (1) is a non—time-varying constant vy, that will be determined
later from initial and final conditions. Moreover, as we will see
shortly. the transient component v (¢) always goes to zero as
t — oo (that’s why it is called fransient). Hence, as t — 00,
Eq. (6.7) reduces to

vc(00) = Vs, (6.9)
in which case Eq. (6.7) can be rewritten as
ve(t) = ve(t) + ve(00). (6.10)

Our remaining task is to determine vy (7).

equations. Thus, we assume that
() = Ae”, (6.11)

where A and s are constants to be determined later. To ascertain
that Eq. (6.11) is indeed a viable solution of Eq. (6.8), we
insert the proposed expression for u(f) and its first and second
derivatives in Eq. (6.8). The result is

sTAe" +asAe? +bAe =0, (6.12)
which simplifies to
s2fas +b=0. (6.13)

Hence, the proposed solution given by Eq. (6.11) is indeed an
acceptable solution so long as Eq. (6.13) is satisfied.

The quadratic equation given by Eq. (6.13) is known as the
characteristic equation of the differential equation. It has two
rools:

R a
o = 3L = 3 (Npfs), (6.17a)
1
= —=h (rad/s), (6.17b)
“w=TIc

the expressions given by Eq. (6.14) become

51 =—a+ /o2 — o, (6.18a)
s =—a —Ja2 —a?, (6.18b)

The solution in the present section pertains to the overdamped
case corresponding to « > ay. Under this condition, both sy
and s7 are real, negative numbers. Consequently, as t — 00,
the first two terms in Eq. (6.16) go to zero, just as we asserted

o ,,‘2,'+ ,‘(%)Z,h_ (6.14)
a ay?
n==-5- (5) —Bl; (6.14b)
ue(t) = A€’ + Ape™ fort >0, (6.15)

where constants A and Aj are to be determined shortly.
Inserting Eq. (6.15) into Eq. (6.10) leads to

uc(t) = Are’!! + Aze™ + uc(c0). (6.16)

The exponential coefficients 51 and s are given by Eq. (6.14)
in terms of constants a and b, both of which are defined in
Eq. (6.6). By reintroducing the damping coefficient « and
resonant frequency ey, which we defined earlier in Eq. (6.1),

earlier.
] s
= 1c(0) — s2[vc(0) — ve(oco
A=< c(0) — s2[vc(0) — ve( )]‘ (6.223)
S| — 82
| -
ic(0) — s1[ve(0) — ve(oo
4, - 2@ 1[ue(0) — ve( )IA (6.22b)

- § — 8
This concludes the general solution for the overdamped
response. A summary of relevant expressions is available in
Table 6-1.




Tuble 6-1: Step response af RLC circults for 1 > 0.

Series RLC Parallel RLC
L
Input: de & T
o [, . FL
action 2 z T
@m0
Overdamped (a > ap) Overdamped (@ > ap)
wek) = A 4 A2e™ 4 ucio) i) = Ay A iy (60)

£ i) —slue(0) — ve(s0)]

Critically Damped (o = o) Criticalty Damped (o = ax)
de) = (B + Batde ™"+ ue(o0) i) = (B By g i (00)
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Given that in the circuit of Fig. 6-8(a), V; =16V, R = 64 Q,
L =0.8H, and C = 2 mF, determine vc(f) and ic(f) fort > 0,
The capacitor had no charge priorto f = 0.

=q[&<o_)= o = 15:'63)

Y62
@)= = 1cfy)

R 64
= —=———=40 /s,
3L ~2x08  ‘ONp/s
| 1
wy = = = 25 rad/s.

VLC 408 x2x 10~

a4 pad Wg_(l/»m}wl cAﬂfQ

51 =—a+/a? —wf
—40 + v40% — 252 = —8.8 Np/s,

$3=—a — /o —w} = —71.2 Npis.

Prior to 1 = 0, there was no current in the circuit, and since the
current through L (which is also the current through C) cannot
change instantaneously, it follows that

ic(0) =iL(0) =i L(07) =0.
From Eq. (6.22). Ay and A3 are given by

L= §1— 8
20—
_WHTIO=18 _ _jsssv,
—8.8+71.2 -
¢ ic®) —silve(©) — ve(o)]
51— 82
_ [W] =225V
—88+71.2

The total response vc(r) is then given by

| /ﬂ;@)

velr) = [—18.25¢ 8% +2.25¢ 7712 4 16) V

(fort > 0),




