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Figure 6-14: The differential equation for uc(f) of the series
RLC circuit shown in (a) is identical in form to that of the current
i1 (1) in the parallel RLC circuit in (b).
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Figure 6-14: The differential equation for uc(r) of the series
. RLC circuit shown in (a) is identical in form to that of the current
senes, ip.(1) in the parallel RLC circuit in (b).

When expressed in terms of uc(r), the voltage gommap o all
three passive elements, Eq. (6.51) becomes L AG
s L
d
KCb  Ziarcte_y, Pl
o, = L div,/ e, aiid réarciniping armns, eads o)~ @IV dM’ (4
2 Ll

Using ve =

(6.53)

(6.54)




Table 6-1: Step response of RLC clrcults for ¢ > 0.
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Exercise 6-8: In the porallel RLC circuit shown in
Fig. 6-14(b), how much energy will be stared in L and C
at s = 0o

Answer: wy =} LI2, we = 0.(See @D

6-8 General Solution for Any
Second-Order Circuit with de
Sources

According o the material covered in the preceding sections,
series and parallel RLC circuit share a common set of
characteristies. An RLC circuit is characterized by a rescaant
frequency e and o damping coefiicient , and when driven
by a sudden de excitation, the circuit cxhibits a response that
decays exponent nd it may or may not contain
an oscillatory varation, depending on whether w is or is not
larger than @ in magnitude, respectively. These characteristics
arise from the interplay hetween energy storage and energy
dissipation. During the eperation of the RLC circuil, encrgy
i exchanged between the two storage elements—the capacitor
and the inductor—through the resistor D‘Nmﬂl(lﬂ is governed

by e~ which we can redefine as ¢ ™"

(). (6:58)

I this altemnative form, the decay rate s specified by the time
constant . I ¢ s short (rapid decay) in comparison with the
duration of & single oscillation period T. where
it means that energy burms away too quickly to
oscillation. This is the overdamped case. On the other hand,
if 7 is sufficiently Jong (slow decay) in comparison with 7.

Step 1: Develop a second-order differential equation for x(f),
fort 2 0. Express the cquation in the general form

2 a4 by =, (6.59)
where a, b, and ¢ are constants.

Step 2: Determine the values of @ and ey:

a

=5, ap=vbh. (6601

2
Step 3: Determine whether the response x(1) is overdamped,
critically damped, or underdamped, and write down the
expression corresponding 1o that case from the following
general solurion:

General Solution
Orerdamped (@ > ax)

X(0) = [Are"" & Aze? 4 x(00)], (for 1 > 0)
(6.610)

Critically Damped (¢ = an)

X0 = [(B) + Batye ™ 4 xtoo)l, (ot =0)
(6:61b)

Underdamped (& < wy)

2(1) = [~ (D3 cos wgt + Dy sinanr) + x(00)],
(forr = 0) (661c)
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Table 6-2: General solution for second-order cireuits for { > 0.

x(1) = unknown variable (vouagc or current)
Differential equation: 2 dax' +bxr=c

Initial conditions: (@) and x '(0)
Final condition: x(00) =
a
a=3 wy=vb

Overdamped Response @ > ay
x(t) = [A1e™ + Aze’™ + x(00)] w(r)
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Underdamped o < o

X(0) = e (Dy cosor + Dasinet) + x(00)] u(r)

x'(0) + a[x(0) — x(00)]
g
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Exercise 6-9: Develop an expression for ic(f) in the
circuit of Fig. E6.9 fort > 0.

I
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Figure E6.9

Answer: i¢(t) = lycos wot, with wy = 1/+/LC . This

is an LC escillator circuit in which dc energy provided

by the current source is converted into ac energy in the
-_—

LC circuit. (See €AD) )
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The 1940 Tacoma Narrows Bridge, the first Tacoma Narrows Bidge, was a suspension bridge in the U5, state of Tacoma Narrows Bridge
Washinglon that spanned the Tacoma Narrows straltof Puget Sound bebveen Tacoma and the Kitsap Peninsula. it
pened ta traffc.on July 1, 1940, and dramatically collapsedt i Puget Sound on Novermber T of the same year. At
e time ofits consiruction (and ifs destucton), he brige was he (hird langes! suspension bridge in the world in
terms of main span length, behind the Goldsn Gate Bridge and the George Washinglon Bridge.
Conistuction on the bridge began In September 1938. From the time the deck was buit, It began ta move vertically
I winay conditions, which Ied (o constniclon warkers giing ihe bridge the nickname Galloping Gartie, The metion
was observed even when fne biidge opened o fhe public, Several measures aimed at slopping fhe mofion were »
Inefective and the bricge's man span finall collapsed under 40-mile-per-hour (64 KIvh) wind conditions the The orginal Tacoma Narrows Biidoe roadway
stad anc uitratec voonty under 40-mie-
per-hour (54 ki) wins o the iy of the
Following the collapse, the Linkted States’ involvemant in Worid War Il detayed plans o replace the bridge, The clapse

morming of November 7, 1940,

Usually, the approach taken by those physics textbooks is to introduce a first order forced
oscillator, defined by the second-order differential equation

mE(t) - ci(t) - ke(t) = Feos(wt) — Fapat 5

where m, ¢ and k stand for the mass, damping coefficient and stiffness of the linear system

(eq. 1)

and /" and  represent the amplitude and the angular frequency of the exciting force, The
solution of such ordinary differential equation as a function of time 7 represents the
displacement response of the system (given appropriate initial conditions). In the above

system resonance happens when @ is approximately w, =  /k/m, i.e. w, is the natural

(resonant) frequency of the system. The actual vibration analysis of a more complicated
mechanical system—such as an airplane, a building or a bridge—is based on the
linearization of the equation of motion for the system, which is a multidimensional version of
equation (eq. 1). The analysis requires eigenvalue analysis and thereafter the natural
frequencies of the structure are found, together with the so-called fundamental modes of the
system, which are a set of independent displacements and/or rotations that specify
completely the displaced or deformed position and orientation of the body or system, i.e., the
bridge moves as a (linear) combination of those basic deformed positions.

However, to some degree the debate is due to the lack of a commonly accepted precise
definition of resonance. Billah and Scanfan!’] provide the following definition of resonance "In
general, whenever a system capable of oscillation is acted on by a periodic series of
impulses having a frequency equai to or nearly equal to one of the natural frequencies of the
illation of the sy the system is set into oscillation with a relatively large amplitude.”
They then state later in their paper "Could this be called a resonant phenomenon? It would
appear not to contradict the qualitative definition of resonance quoted earlier, if we now
identify the source of the periodic impulses as self-induced, the wind supplying the power,
and the motion supplying the power-tapping mechanism. If one wishes to argue, however,

that it was a case of externally forced linear resonance, the mathematical distinction ... is
quite clear, self-exciting systems differing strongly enough from ordinary linear resonant
s

ones." -
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Figure 6-17: Circuit for Example 6-11.

Example 6-11: Two-Inductor Circuit
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Determine i1(t) and i2(f) in the circuit of Fig. 6-17 for
t = 0. The component values are Vg = 1.4V, R} =0.4 Q,
Ry=03Q, L1 =0.1H,and L, = 0.2 H.
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Exercise 6-10: For the circuit in Fig. E6.10, determine
ic(t) fort = 0.
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Answer: ic(f) =2¢ "% cos 4.7t A. (See €AD)
Example 6-12: Second-Order Op-Amp Circuit

Determine iy (1) in the op-amp circuit of Fig. 6-18(a) fort = 0.
Assume Vg = 1 mV, R} = 10k, Ry = 1 MQ. R; = 100 ,

L=5HandC=1uF.
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