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Figure 5-19: Voltage-division rules for (a) in-series resistors
and (b) in-series capacitors.
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(b) Equivalent circuit under steady state conditions

Figure 5-26: Under steady-state de conditions, capacitors act
like open circuits, and inductors act like short circuits,

(a) Plot the waveform i(r) versus t and determine the
locations of its first maximum, first minimum, and their
corresponding amplitudes.

(b) giventhat L = 50 mH, obtain an expression for v(r) across
the inductor and plot its waveform. '

(c) Generate a plot of the power p(t) delivered to the inductor.

ot

Upon closing the switch at f = 0 in the circuit of Fig. 5-23(a),
the voltage source generates a current waveform through the
circuit given by

i(f) = 10 0¥ sin(th/Z) A, (fort > 0).
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Figure 5-23: Circuit for Example 5-7.
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Figure 5-28: RC circuit with an initially charged capacitor that
staris to discharge s encrgy affer £ = 0.

d
RC % =0, (5.69)

Upon dividing both terms by RC, Eq. (5.69) takes the form

d
2y +avec =0 (source-free), (5.70)

dt

fc[o')=1/5 (1 c)

a=— (5.71)

& The solution of the source-free equation is called the
natural response (discharging condition) of the circuil. <

‘The standard procedure for solving Eq. (5.70) starts by
replacing ¢ with dummy variable ¢' and multiplying both sides
by e,

dve ,
— ¢ tavee™ =0. [ENFi]
ar ¢ £

Next, we recognize thal the sum of ihe iwo terms on the lcft-
ansion of the differential of (vge”'),

hand side is equal e

d . duc .
(ope’y = 200 ' . e 533
dr’ dr
Hence, Eq. (5.72) becomes
4 (e =0 574
2 e (5.74)
g tvee

Integrating both sides, we have
f L e’y ar’ =0, 5.15)
A o =0, (575
P
0

where we have chosen the lower limit o be ¢ = 0 (because we
are given specific information on the state of the circuit at that
point in time). Performing the integration gives

o —o
vee'| =




ve(t) = ve(0) e, v ©®

(natural response discharging), s

with =
T = RC (s), (5.79)

where 7 is called the fime constant of the circuit, and it is
measured in seconds (s).

In view of the initial condition given by Eq. (5.67), namely
ve(0) = Vi, the expression for uc (1) becomes

velt) = Vee 1T u(n), (5.80) ©

uH

A

where we inserted the unit step function u (1) as a multiplication
factor as a substitute for “for 1 > 0.” The plot shown in
Fig. 5-29(a) indicates that in response to the switch action,
v (t) decays exponentially with time from V; att = 0 down to
its final value of zero as t — 00. The decay rate is dictated by
the time constant 7. At t = 7,

velt = 1) = Vee ! =037V, (5.81)
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re 5.29: Response of the RC circuit in Fig. 5-26(a) 10
moving the SPDT switch to terminal 2

Series RC Circuit Solution

1: If switch action is at 1 = 0, analyze circuit at t = 0~
to determine initial conditions vc(0™) and ic(0). Use
this information to determine vc(0) and ic(0), at 1
immediately after the switch action. Remember that the
voltage across a capacitor cannot change instantancously
(between = 0~ and ¢ = 0), but the current can.

2: Analyze the circuit to determine ve(00), the voltage
across the capacitor long after the switch action.

3: Determine the time constant t = RC.
4: Incorporate the information obtained in the previous
three steps in Eq. (5.96):

ve(t) = {ue(o0) + [ve(0) — veoa)le T} u(r).

5: If the switch action isat t = Ty instead of t = 0, replace
0 with Ty and use Eq. (5.98):
ve(t) = {uc(ool + [ue(To) — veloo)] e ¢ '”’”]

< u(t — Tp).
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I
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(a) Original circuit

Subcircuit 1 (¢

Vrh e Llo]

(b) After replacing circuit with Thévenin equivalent

Figure 5-31: Replacing a resistive circuit with its Thévenin
equivalent as seen by capacitor C.

Thé;

n Approach to RC Response

Step 1: If the circuit includes a single switch action (open,
closcl of move between two terminals) at t = To. analyre
the circuit at £ =T, (just before the Swiich action)
to determine uc(7; ). When so doing, the capacitor
should be replaced with an open circuit. Then st
we(To) = ve(Ty ), where ue(To) is the voltge across
“The CapacHor affer the switeh action.

Step 2: For the circuit configuration at 1 = Ty (after the
switch action), obtain the Thévenin equivalent circuit as
“scen” by the capacitor. Figure S-31(3) depicts a genera
circuit (composed of possibly two subx d
10 a capacitor C. Afier removing (lemporarily) the
capacitor and calculating Yy and R, of the equivalent

é tterminals fa, b), rei i

asin Fig, 5-31(b).

Step 3: The capacitor’s voltage response is then given by

veln) = [ve(o0) + [ve(T) — ve(oarle™~T®

ut —To),

with ve(o0) = Vi, ve(Th) as obtained in step |, and
T=RmC.

Step 4 If the circuit undergoes multiple switch actions,
repeat the procedure for each time segment and use the
property that the voltage across a capacitor cannot change
instantancously to maich the responses at the boundarics
hetween adjacent lime segments.

Tiable 552 Response forms of hasic et order circuits
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Figure 12-2: The top horizontal sequence involves solving a differential equation entircly in the time domain. The bottom horizontal
sequence involves a much casier solution of a linear equation in the s-domain.

Solution Procedure: Laplace Transform

Step 1:  The circuit is transformed to the Laplace
domain—also known as the s-domain.

Step 2: In the s-domain, application of KVL and KCL
yields a set of algebraic equations.

Step 3: The equations are solved for the variable of
interest.

Step 4:  The s-domain solution is transformed back to
the time domain.

The uniqueness property can be expressed in symbolic form
by
f(t) <= F(s). (12.12a)

The two-way arrow is a short-hand notation for the combination
of the two statements

LifMl=F@),  LTFI=f@).  (1212b)
The first statement asserts that F(s) is the Laplace transform

of f(t). and the second one asserts that the inverse Laplace
transform (L7 D of F(s) is f(1).




12-2.1 Definition of the Laplace Transform

The symbol L[ f(1)]"is a short-hand notation for “the Laplace
transform of function f(r).” Usually denoted F(s), the Laplace
transform is defined by

o0
F(S)=[-[f(t)]=ff(t) e S dt, (12.10)
i

where sis acomplex variable with areal part o and an imaginary
part w:

s=0+ jo. (12.11)
Given that the exponent st has to be dimensionless, s has

the unit of inverse second, which is the same as Hz or rad/s.
Moreover, since s is a complex quantity, it is often termed

complex frequency.
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where i(1) is the current flowing through the looy
the voltsge across €. By invoking the i-v rel
Eq. (12.36) becomes

and ve (1) is
ship for €,

1 i di 237
R.+|:Ffutr+ucm 1]+Lm,vﬂum, (12.37)

which now contains a single dependent variable, /()

p 2: Define Laplace transf

rents and voltages
currents and voltages
and then transform the equation to the s-domain

corresponding to the time-d

We designate 1(s) as the s-domain counterpart of i (r),
i(1) - 1(s) (12.38)

To transtorm Eq. (12.37) to the s-domain, we apply the
appropriate property or Laplace transformation (LT) from

Tables 12-1 and 12-2, as follows:

Ri(l) += RI(s)

lication by constant),

1 11
Ffidr . ?? (time-integral property),
W
1
w) = ZO (1 ora constant),
s
di
L= Ls Its) — (0~
7 Ul -Hom]
(time derivative property),
Vo u(t) 4= Yo (T of a constant).
s

The opening paragraph of this section stated that the circuit
had no stored energy prior (o £ = 0. Hence, 1e(07) = 0 and
i(07) = 0. Replacing cach of the terms in Eq. (12.37) with its
s-domain counterpart leads o

B STAT=02 g (12.39)
Cs s

Table 12-1: Properties of the Laplace transform ( f (1)

Ofori <07).

Property fay

Fis) = LIf(1)]

1. Multiplication by constant K ft)

nearity K1 file) + K2 falt)

flat), a>0
4. Time shift fa=T)u(t—T)
5. Frequency shift e f@y

6. Time 1st derivative

2
7. Time 204 dertvative. =20
ar?
'
8. Time integral f Jev) dr
9. Frequency derivative tfay
10. Frequency integral @

$

$

!

t

K F(s)

Ky Fi(s) + K2 Fa(s)
1. (s

il

eTsFE), T=0
F(s +a)

sF(s) — f(07)

F(s) —sf(07)
—flwy
- F(s)
s
d
o F(s)

of
f F(s) ds’
H




